Why does light travel at the speed that it does?

Whether it was the ‘hand of God’ or some truly fundamental physical process that formed the constants, it is their apparent arbitrariness that drives physicists mad. Why these numbers? Couldn’t they have been different?

Advertisement

One way to deal with this disquieting sense of contingency is to confront it head-on. This path leads us to the anthropic principle, the philosophical idea that what we observe in the Universe must be compatible with the fact that we humans are here to observe it. A slightly different value for α would change the Universe; for instance by making it impossible for stellar processes to produce carbon, meaning that our own carbon-based life would not exist. In short, the reason we see the values that we see is that, if they were very different, we wouldn’t be around to see them. QED. Such considerations have been used to limit α to between 1/170 and 1/80, since anything outside that range would rule out our own existence.
But these arguments also leave open the possibility that there are other universes in which the constants are different. And though it might be the case that those universes are inhospitable to intelligent observers, it’s still worth imagining what one would see if one were able to visit.

Advertisement

For example, what if c were faster? Light seems pretty quick to us, because nothing is quicker. But it still creates significant delays over long distances. Space is so vast that aeons can pass before starlight reaches us. Since our spacecraft are much slower than light, this means that we might never be able to send them to the stars. On the plus side, the time lag turns telescopes into time machines, letting us see distant galaxies as they were billions of years ago.

Join the conversation as a VIP Member

Trending on HotAir Videos

Advertisement
Advertisement
Advertisement