All the same, I will venture a guess about one feature of the future: technology will go “small.” Twentieth-century technology was primarily about “large” things. The technological historian Vaclav Smil has pointed out in a set of remarkable books that the diesel engine and the gas turbine were the main technological breakthroughs that made globalization possible (he calls them “prime movers”). To these, we can add shipping containers, satellite communications, and oil-drilling platforms (among others). Energy was generated by massive power stations. Materials were produced by gigantic steel mills. Huge airplanes and tall cell towers embodied what the twentieth century could do. But the twenty-first century may be very different. Our ability to manipulate molecules and little pieces of DNA is made possible by tools that would make Robert Hooke’s jaw drop: from the electron microscopes developed in the 1930s by two German engineers (Ernst Ruska and Max Knoll) to the scanning-tunneling and ion-beam devices used today for nanotechnology. Manipulating DNA molecules, sorting cells, and sequencing and splicing genes may offer a better path to a better future than building supersonic planes.
If technology were to go small, it would hardly mean that it would be unimportant. Exciting breakthroughs will come from genetic modification of living beings. While people have always been able to change the looks and features of animals and plants, genetic modification lets us fine-tune their features according to preference. It is to selective breeding what a surgeon’s scalpel is to a heavy ax. There is some reluctance to do this kind of modification, perhaps because it is so radical and the full effects cannot be known. Some people are queasy about creating new species, and not without good reasons. But the opportunities are so dazzling that someone will take the risk. If Europeans continue to resist what they call “Frankenfoods,” some other nation will develop—and profit from—them. Genetically modified crops may be capable of withstanding rising global temperatures, thus helping us adapt to climate change. Scientists may also be able to “teach” more plants to manufacture their own fertilizer, resist pests, and protect themselves from harmful insects and thus mitigate negative environmental effects from pesticides and other harmful aspects of modern agriculture.
Join the conversation as a VIP Member