“As power-systems control becomes more and more complex, it makes sense to look to the brain as a model for how to deal with all of the complexity and the uncertainty that exists.”
Led by Venayagamoorthy, a team of neuroscientists and engineers is using neurons grown in a dish to control simulated power grids. The researchers hope that studying how neural networks integrate and respond to complex information will inspire new methods for managing the country’s ever-changing power supply and demand. …
Because the brain operates in a completely different way than traditional computing systems, the first step was to try to make sense of how the brain integrates and responds to data. To do so, Venayagamoorthy enlisted the expertise of neuroscientist Steve Potter, Ph.D., director of the Laboratory for NeuroEngineering at the Georgia Institute of Technology.
A leader in the field of learning and memory research, Potter recently pioneered a new method for understanding how the brain integrates and responds to information at the network level. The technique involves growing neurons in a dish containing a grid of electrodes that can both stimulate and record activity. The electrodes connect the neuronal network to a computer, allowing two-way communication between the living and the electronic components.
Potter’s group has had success with this approach in the past, having shown that living neuronal networks can be made to control computer-simulated animals and simple robots.
Join the conversation as a VIP Member